AFOSR Program Review

Formal Specification and Design of Secure Agents (99NI1029)

Agent Development Environments for Large-Scale Multi-Agent,
Distributed Mission Planning and Execution in Complex Dynamic
Environments (99NM097)

Scott A. DeLoach
Thomas C. Hartrum

March 2000

The views expressed in this presentation are those of the author and do not reflect the official policy of the United
Stated Air Force, Department of Defense, or the US Government.

Approved for Public Release; Distribution Unlimited.

AFOSR Program Review

Overview

¥ Problem statement, objective

B Current work, results

B Significant accomplishments/transitions
B Future direction

B Publications

® Significant publications and total publications under
the grant.

® Also mentions in the media.
B |ssues

AFOSR Program Review

Problem Statement

Apply software synthesis techniques to the
analysis, design, and construction of intelligent
agents to ensure appropriate security and
communications protocols are correctly
Incorporated.

B Define a methodology and language for defining high-
level behavioral specifications for multiagent systems.

B Implement a system to design and semi-automatically
synthesize multiagent systems that adhere to required
protocols.

B Verify that systems meet requirements.

AFOSR Program Review 3

Current Results

B Multiagent Systems Engineering (MaSE)

® Specification to code methodology for building
multiagent systems

M agentTool
® Automation for MaSE
® Supports design, verification, and code generation

B AWSOME

AFOSR Program Review 4

Multiagent Systems Engineering

AFOSR Program Review

Multiagent Systems Engineering

(MaSE)

Applying
Use Cases

Creating Constructing

I Use Cases I

PSR
> Sequence

Agent Classes | Conversations

Assembling System
Agent Classes Deployment

Diagrams
e Deployment
N sations ploy
Tasks

Agent l }l
Classes g

AFOSR Program Review

Capturing Goals

B Input
® System specification / requirements 1

B Product i
® A structured hierarchy of goals 111 |12] 13
® Use cases \

® Diagrams
: : Goal hierarchy diagram
® Goal hierarchy diagram (Simp“f)i/ed))

AFOSR Program Review

Transforming Goals to Roles

B Input
® Goal Hierarchy Diagram

B Product .

® Agent Roles “I 1,

1.3

B Diagrams
® Role Models ‘ |

AFOSR Program Review

Applying
Use Cases
B Input
® Use cases
® Set of roles
B Product
® Minimum communication paths between
roles

® Diagrams
® Sequence Diagram
® Task Diagram

AFOSR Program Review

| client I

Applying Use Cases

request

| manager I

respond

>

delegate

| producer I

«

return

>

<

B Input
® Agent roles
® Tasks

B Product

® A diagram of agent classes and
conversations

® Diagrams
® Agent Class Diagram

AFOSR Program Review

Creating Agent Classes

Creating
Agent Classes

I Register R

Agent?

10

Constructing Conversations

Constructing
Conversations

B Input
® Agent Class Diagram
® Product

2% _ *start .| ywaitState

® Conversations as graphical state
tables including actions

B Diagrams dataMsg[validData]'storeData*stop

® Conversation Diagrams
Aetgp

AFOSR Program

Agent Assembly

Assembling
Agent Classes
B Input
® Agent Class Diagram
® Conversation Diagrams —
. P rOd u Ct KnowledgeBase
® Complete Agent classes with m— o Qe
CO m p O n e n tS query(data:String):Boolean

® Diagrams \

® Agent Architecture Diagram

H 9,
backward(goal: String)

AFOSR Program Review 12

Agent Class Assembly

B Defined using Agent Definition Language
(AgDL)
® Components and connectors

» depicts static structure of agent

® Object Constraint Language (OCL)

» represents low-level definitions

® State diagrams

» depicts dynamic aspects

AFOSR Program Review

13

Messagelnterface

Static Model

Controller

interpretMsg(msg:Message

KnowledgeBase

RuleContainer

send(msg:Message)#receive
Msg(msg: Message)

+rules: Set(Rule)
—-msg:Message

+knowledgeType: String
tdata: Set(Condition)

checkRules()

add(data: Condition)
delete(data: String)
uery(data:String):Boolean

InferenceEngine

forward(data: String)
backward(goal: String)

AFOSR Program Review

14

Dynamic Model

[{__.:l agentT ool [0
System Cammand
Currenthy Selected |ﬂgent: Feactive |
(Agem Diagram | Agent: Reactive | component Stat Diag
Add State i
"receive 3 message'freceiveMsglmessage)
._ndd Trans
. Wiait @

-~

celect CUEFEENT State

gulect HEDLT State
Trareition Ldded

seloct CUREENT State

gulect HECLT State
Transition Added Statel

select CURREENT State

gelect HECLT State
Transition Hdded

o

sendimessade)'send a message”

AFOSR Program Review 15

Deployment

System
Deployment

B Input
® Complete agent classes

¥ Product
® A collection of agents

B Diagrams
® Deployment Diagram

AFOSR Program Review

agentTool

AFOSR Program Review

17

agentTool

Provide users the ability to specify &
design agent systems and semi-
automatically generate those systems
using software synthesis and component
reuse techniques.

Domain
Knowledge

* Multiagent Infrastructures

Al > [t generation
Components

* planners
* inference mechanisms
* search algorithms

* learning algorithms

Communication
& Security
Protocols

AFOSR Program Review 18

=l Multiagent Systems Engineering
(MaSE)

Applying Creating Constructing
Use Cases Agent Classes | Conversations

Assembling System
Agent Classes Deployment

)
I Use Cases I > Sequence
Diagrams
Conver- Deployment
sations ploy
Require- e ~
Tasks

ments

Agent I iI
Classes g

Currently Implemented

Goal
Hierarchy

AFOSR Program Review 19

Agent Diagram

[{_,:l agentT ool =]

File knowledie Base Cammand

Currently Selected |Cony:Convl |

Agent Diagram |

| Add Agent |

| Add Conv |

Agent! Agent2

Sendlnfo

Agerd added
Agert added
. Cormrersation

Select IMITIATOR
Select RESPONDER

Cororersaticn Sdded

Agerd added

Dyzert added

Addmg Cormeersatioz
Select IMITIATOR
Select RESPONDER

Cororersaticn Sdded

AFOSR Program Review

20

Selecting an Agent Class

[{_,:l agentT ool =]

File knowledie Base Cammand

Currently Selected |Agent: Agentl |

F.ngent Diagram rngent: Agent1

| Add Agent |

| Add Conv |

Agent] Sendina Agent2

Agerd added

Agert added

Addmg Cormeersation
Select IMITIATOR
Select RESPONDER

Cororersaticn Sdded

Agerd added

Dyzert added

g Cormrersation

Select IMITIATOR
Select RESPONDER

Cororersaticn Sdded

AFOSR Program Review

21

Selecting a Conversation

[{_,:l agentT ool =]

File knowledie Base Cammand

Currenthy Selected |Conv:Sendinfo |

F.ngent Diagram rCDrMSEHIZilnfD Initiator |’Cumﬂ:5&ndlnfu Responder ‘

| Add Agent |

| Add Conv |

Agent!) Sendina Agent2

Agerd added

Agert added

Addmg Cormeersation
Select IMITIATOR
Select RESPONDER

Cororersaticn Sdded

Agerd added

Dyzert added

g Cormrersation

Select IMITIATOR
Select RESPONDER

Cororersaticn Sdded

AFOSR Program Review

22

Conversation Diagram

(half a conversation)

[{_,:l agentT ool

File knowledie Base Cammand

=10] x|

Currenthy Selected |Conv:Sendinfo |

F.ngent Diagram rCDrMSEHIZilnfD Initiator |’Cumﬂ:5&ndlnfu Responder ‘

| Add State |

| AddTrans |

resendinfadfstantConviinfo)

. MetantConviinta) wait

celect CTTREENT State
select MEDLT State
Trareiticn Hdded

select CTTREENT State
select MEDT State

Traneiticon Sdded
celect CTUREENT State

select MEDT State
Traeiticn Hdded

acknoledgel

AFOSR Program Review

Conversation Diagram
(the other half)

[{_,:l agentT ool

File knowledie Base Cammand

=10] x|

Currenthy Selected |Conv:Sendinfo |

F.ngent Diagram rCDrMSEHIZilnfD Initiator |’Cumﬂ:5&ndlnfu Responder ‘

| Add State |
‘ Add Trans ‘ validate
. startConviy)r [ralidli*acknowledge
info = modifyF ormatiy)
valid = validate(infa)
"

celect CTTREENT State

select MEDLT State
Trareiticn Hdded

select CTTREENT State

select MEDT State
Traneiticon Sdded

[MOT walidl™gsendinfo

—_—
calect CUREENT State weait stantConviy)/
select MEDT State

Traeiticn Hdded ",

AFOSR Program Review

Code Generation

B Automatic from Agent and Conversation Diagrams

B Select platform-dependent components such as a
messaging system

B Currently focused on agentMom

E,j agentT ool

File Knowledge Base Cammand

..;_n

Currently Selected |Comr Sendinfo \

CUBLLo unid mecel velsscace | Besebge W) |

BiTing parforestive = & gatPardorestinsii:
Agent Diagram | Comy; Initiator rl"nm- R ¢4 register m aee chatier
if i L led "chatregiesar]]) {
| Add State Partici Teaabiie = [ChatParticipsst s getContenti):
= thius charRegister inswis
Add Trans validate
. startC oy - [validl*acknowledge @ = AU ter & Teed CRALCET
info = modifyF orrmatiy) i Riwe maqualed "chatdsregister™) b
walid = validate(info) Htmmfi-ﬂtmilﬂl.ﬂﬂ:ntln I
his olat srard this geriurrentRaciplent (1]
e CURRENT S 504 cr Join s chanmal
select HEMT State E mlge if {perdoresiies sgoalsl " ioinchane=l"1) {
Transition Added [MOT validlfrgsendinfo
select CITRRENT State
select HEDLT State

wait stantConviy)/
—

rasnChannesl ({Strisgis getContenti). m SetGeadarines] k7]
L

else il | e eqealel "okt {
[Ehl‘tﬂli’h L1

4]

AFOSR Program Review 25

agentTool

\ Spin
—

Verification Process

Conversation
Statechart info

Conversion }

Conversation
Promela Code

Y

Feedback
e text window
* graphical

AFOSR Program Review

26

i
v
=
-

=
€
n
t

proc 0 = :init:
proc 1 = Sendlnfolnitiator
proc 2 = Sendl nf oResponder
proc 3 = Col |l ectDatalnitiator
proc 4 = Col | ect Dat aResponder
ggp O 1 2 3 4
1 Col | ect Dat a! col | ect Dat a
1 Col | ect Dat a?col | ect Dat a
1 Col | ect Dat a! col | ectionFailure
1 . . Col | ect Dat a?col | ectionFailure
2 Sendl nf o! send
2 Sendl nf o?send
2 Sendl nf o! acknowl edge
2 Sendl nf o?acknow edge
spin: trail ends after 16 steps
final state:

#processes:
16:
proc
proc

proc 4 (Coll ectDat aResponder) |ine
3 (CollectDatalnitiator) line 65 "verify" (state 24)
2 (Sendl nf oResponder)
proc 1 (Sendlnfolnitiator) line
proc O (:init:) line 114 "verify" (state 6) <valid endstate>
5 processes created

AFOSR Program Review

Feedback

Syrem Command

Cimienily Sk cled ||Z||"\- Al Dota

Bl Cizwgrivms Carrctollactiita Responies |
| S L Jrasdsciuni] sl o T arvsamission
kel Trares, o (ol N i i, B (B
-
. 4 1 ———
E B R PR AT
e Tl w1 4
i B P e e p— kil aekieaiedge
e Bl
L i by
e e gh bgitl i k' N
| o jeghalise | at ®

92 "verify" (state 27)

line 46 "verify" (state 24) <valid endstate>
25 "verify" (state 22) <valid endstate>

DEADLOCK CONDI TI ON EXI STS I N THE FOLLOWN NG CONVERSATI ON;
Conversation Name = Col | ectData

Partici pant Nane = Responder

Current State wai t

State Transition acknow edge

DEADLOCK CONDI TI ON EXI STS I N THE FOLLOWN NG CONVERSATI ON:

Conversation Nane = Col | ectData
Partici pant Nane = Initiator
Current State = | ogFailure

State Transition = acknow edge

27

B Conversation deadlocks

B Non-progress loops

B Unused messages
B Mislabeled transitions

¥ Inability to create reguired sequences

AFOSR Program Review 28

Knowledge Base Overview

B Agent Random-Access Meta-Structure (ARAMS)
® Java-based repository

B Multiagent Markup Language (MAML)
® Key to interoperability — XML based

agentTool

Domain
Model

C__

Object
Model

\ /

ARAMS

1] MAMlZIAE/locheI/
//= S

MAML Model |||

>

)

AFOSR Program Review

ARAMS
Knowledge
Libraries

29

agentTool

Connection
Agentl

Agent
Instantiator

=

Connection
Agent2

Local Network nodes

Store, List, or
Load objects

Comm framework

AFOSR Program Review

ATsystem
Library

KBAdmin

Agent
ATrole
Library
ATframeworks
Library

Remote KBServer

L BX BE BE BR BE BE BR BR ¢
saleiqi

Knowledge Base Implementation

30

B Based on XML

® Compatible with existing
tools

B Example

</agent>
<agent version="1" name="Bidder">
<description>
none
</description>
<view x="421" y="102" w="50" h="50"/>
<architecture version="1“ name="null">
<description>
none
</description>
</architecture>
</agent>

EZ1 XML Viewer
File Settings

Multi-Agent Meta-Language
(MAML)

IS I=] E3

I [Document]
I mas
@ [I7 description
] framework
o [agent
® [agent
- [I] description
Cview
®- [architecture
o 3 description
@ [component
- [O] description
1 view
®- [statetable
1 state
] state
o [state

[transition
[transition

(=] attribute
3 method
- [component
O [conversation

|j| hame=counter

E‘| returntype=hoolean
D parameters=

|j| pre=count=0

E‘| post=count=0

[visible=false

AFOSR Program Review

31

AFIT Wide-Spectrum Object
Modeling Environment

(AWSOME)

AFOSR Program Review

32

AWSOME Environment

AFIT Wide-Spectrum Object Modeling Environment

domain
engineering

specification

Ws tree Ws tree Ws tree

- Source Code
synthesis

specification design
extraction x-form

“Domain “Specification “Design
Tree” Tree” Tree”

AFOSR Program Review 33

AWSOME Wide-Spectrum
Modeling Language

AL Specification ~— Design
- O D OO OoOcooOoooOooo.m synthesis
specification /09 3 /T design O
extraction L x-form

Source Code

AFOSR Program Review 34

AWSOME Capabilities

B State model defined as formal spec
® Five formal transforms applied to spec

B Resulting design is object model
® Methods to handle events

® Method to mimic state transitions

B Java code generated from design model
® Demonstrated with two agent systems
® Intend to demonstrate with UConn’s MADGS

AFOSR Program Review 35

Source Code

application
extraction

abstract x-forms

\Q/ —— Implementation & framework
=l)< agent model specific x-forms

Domain Specific

Domain Specific Front Ends
(Implemented)

AFIT Wide-Spectrum Object Modeling Environment

=P Theoretical
=3 |mplemented

Source Code

application
extraction

abstract x-forms

Implementation & framework
specific x-forms

3
agent model

Domain Specific

proof-of-concept transformation

Future Direction

B Integration of domains
® Reuse existing models

® Communication protocols, security protocols, domain
knowledge, etc.

B Detailed design

® Mapping tasks to conversations and internal agent
architectures

B Extend MaSE/agentTool
® Mobility
® Dynamic systems

AFOSR Program Review 38

Publications

B Journal — Foundational Work

® Translating Graphically-Based Object-Oriented
Specifications to Formal Specifications. submitted to
ACM Transactions on Software Engineering and
Methodology, Feb 2000.

® A Theory-Based Representation for Object-Oriented
Domain Models. accepted for publication in IEEE
Transactions on Software Engineering, 1999.

AFOSR Program Review 39

Publications

B Conferences & Workshops

Developing Multiagent Systems with agentTool, submitted to 7th

International Workshop on Agent Theories, Architectures, and
Languages, Boston MA, July 2000.

An Overview of the Multiagent Systems Engineering Methodology.
submitted to 15t International Workshop on Agent-Oriented
Software Engineering, Limerick Ireland, June 2000.

Automatic Verification of Multiagent Conversations, to be
presented at the 11" Annual Midwest Artificial Intelligence and
Cognitive Science Conference, Fayetteville Arkansas, July 2000.

Design Issues for Mixed-Initiative Agent Systems, AAAI-99
Workshop on Mixed-Initiative Intelligence, Orlando FL, July 1999.

Multiagent Systems Engineering: A Methodology and Language
for Designing Agent Systems, Agent-Oriented Information
Systems '99, Seattle WA, May 99.

AFOSR Program Review 40

